Comparing hard and overlapping clusterings

نویسندگان

  • Danilo Horta
  • Ricardo J. G. B. Campello
چکیده

Similarity measures for comparing clusterings is an important component, e.g., of evaluating clustering algorithms, for consensus clustering, and for clustering stability assessment. These measures have been studied for over 40 years in the domain of exclusive hard clusterings (exhaustive and mutually exclusive object sets). In the past years, the literature has proposed measures to handle more general clusterings (e.g., fuzzy/probabilistic clusterings). This paper provides an overview of these new measures and discusses their drawbacks. We ultimately develop a corrected-for-chance measure (13AGRI) capable of comparing exclusive hard, fuzzy/probabilistic, non-exclusive hard, and possibilistic clusterings. We prove that 13AGRI and the adjusted Rand index (ARI, by Hubert and Arabie) are equivalent in the exclusive hard domain. The reported experiments show that only 13AGRI could provide both a fine-grained evaluation across clusterings with different numbers of clusters and a constant evaluation between random clusterings, showing all the four desirable properties considered here. We identified a high correlation between 13AGRI applied to fuzzy clusterings and ARI applied to hard exclusive clusterings over 14 real data sets from the UCI repository, which corroborates the validity of 13AGRI fuzzy clustering evaluation. 13AGRI also showed good results as a clustering stability statistic for solutions produced by the expectation maximization algorithm for Gaussian mixture. Implementation and supplementary figures can be found at http://sn.im/25a9h8u.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On comparing clusterings: an element-centric framework unifies overlaps and hierarchy

Clustering is one of the most universal approaches for understanding complex data. A pivotal aspect of clustering analysis is quantitatively comparing clusterings; clustering comparison is the basis for tasks such as clustering evaluation, consensus clustering, and tracking the temporal evolution of clusters. For example, the extrinsic evaluation of clustering methods requires comparing the unc...

متن کامل

Comparing Clusterings by the Variation of Information

This paper proposes an information theoretic criterion for comparing two partitions, or clusterings, of the same data set. The criterion, called variation of information (VI), measures the amount of information lost and gained in changing from clustering C to clustering C′. The criterion makes no assumptions about how the clusterings were generated and applies to both soft and hard clusterings....

متن کامل

Graph Sensitive Indices for Comparing Clusterings

This report discusses two new indices for comparing clusterings of a set of points. The motivation for looking at new ways for comparing clusterings stems from the fact that the existing clustering indices are based on set cardinality alone and do not consider the positions of data points. The new indices, namely, the Random Walk index (RWI) and Variation of Information with Neighbors (VIN), ar...

متن کامل

QC4 - A Clustering Evaluation Method

Many clustering algorithms have been developed and researchers need to be able to compare their effectiveness. For some clustering problems, like web page clustering, different algorithms produce clusterings with different characteristics: coarse vs fine granularity, disjoint vs overlapping, flat vs hierarchical. The lack of a clustering evaluation method that can evaluate clusterings with diff...

متن کامل

Comparing Clusterings in Space

This paper proposes a new method for comparing clusterings both partitionally and geometrically. Our approach is motivated by the following observation: the vast majority of previous techniques for comparing clusterings are entirely partitional, i.e., they examine assignments of points in set theoretic terms after they have been partitioned. In doing so, these methods ignore the spatial layout ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2015